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ABSTRACT 

The Rankin-Selberg method associates, to each local factor L(s, ~v x ~r'~) 
of an automorphic L-function on GL(n) x GL(n), a certain ]oca] integral 

' In this paper we show that, if v is of W h i t t a k e r  funct ions  for lrv and  ~r u. 

a rch imedean ,  and  Try and  ~ are spherical  principal  series representa t ions  

wi th  tr ivial  central  character ,  t h e n  the  local L-factor  and  local integral  

are, in fact, equal .  Th i s  resul t  verifies a conjec ture  of  B u m p ,  which 

predicts  tha t  the  a rch imedean  s i tua t ion  should,  in the  present  context ,  

parallel the  n o n a r c h i m e d e a n  one. 

We also derive, as prerequisi te  to the  above result ,  some  identi t ies for 

generalized Barnes  integrals.  In par t icular ,  we deduce  a new t rans forma-  

t ion formula  for cer ta in  single Barnes  integrals,  and  a mult iple- integral  

analog of the  classical Barnes '  L e m m a .  

I n t r o d u c t i o n  

Let ~r and 7c' be automorphic cuspidal representations of GL(n,A), where A 
denotes the adeles over a global field F. One may then define a global L-function 

L(s, 7r x ~rt), which bears on a number of problems in automorphic forms and rep- 

resentations. For example, suppose r represents a primitive cusp form of weight 

k and character X on F0(N): Shimm-a [Shi] has deduced, from the expression of 

L(k - 1, 7r, r ' )  (for appropriate rl) as a Petersson inner product, the algebraic- 

ity of special values of twisted Langlands' L-functions L(s, ~, ¢). (Here ¢ is a 

primitive Dirichlet character modulo N, and L(s, 7r, ¢) is properly normalized.) 
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Another example is the fact - -  demonstrated by Jacquet [J] in the case n = 2, and 

by Jacquet and Shalika [JS2] in the general case - -  that the partial L-function 

Ls(s, r x r ' )  (which is closely related to L(s, r x r ' ) )  has a pole at s = 1 if and 

only if ~ and r t are contragredient representations. This latter result itself has 

several applications: one such is to growth estimates for Fourier coefficients of 

Maass forms, cf. the work of Moreno [M] in the case n = 2. 

The analytic properties of L(s, ~r x r l)  may be studied by means of the global 

integral 

(0.1) f ¢(g) ¢'(g) E*(g, s) dg; 
J z  (A) GL(n,F)\GL(n,A) 

here ¢ and ¢~ are cusp forms in the spaces of ~r and ~r ~ respectively, and E*(g, s) 
is an Eisenstein series. (Zn(A) denotes the center of GL(u, A).) As a function 

of s, this integral has meromorphic continuation and a functional equation (both 

inherited from the Eisenstein series). To deduce similar properties of L(s, ~r x 7d), 
one writes both this global L-function and the above global integral as products 

of local factors, and then compares at each place of F the local L-function with 

the local integral. 

More specifically, let us write 7r = ® ~ v ,  with ~v a representation of GL(n, Fv) 
for each place u of F (and similarly for 7d). Then we have the factorization 

L ( s , r  × ~') = 1-L L(s ,  Trv × ~'~). Moreover, by the Rankin-Selberg unfolding 

method, the integral (0.1) may be expressed as I-Iv ~(u; W, W', f , ) ,  where 

W', fs) : f W(g) W'(g) fs(g) dg. (0.2) fi(u; w, 
Jz . (y~)xn (F~)\GL(n,F~) 

Here X,~(Fv) C GL(n, Fv) is the subgroup of upper triangular, unipotent 

matrices. Also W (resp. W ~) is a Whittaker function for ~rv (resp. 7r~), and 

f8 is in the space of the induced representation 

Ind(Gf (n ,  Fv), P ( n  - 1, 1, F,) ,  5s), 

where 6 is the modular quasicharacter of the standard parabolic subgroup 

P(n - 1, 1, F~) (with Levi factor G L ( n  - 1) × GL(1)). (We will elaborate on 

L(s, Try x ~r~) and fi(u; W, W',  f~), in the particular case of interest to us, in 

Section 1 below.) The problem is then to determine the extent to which 

fi(u; W, W',  L )  reflects L(s, Try x lr~), for each u. 

To this end, Jaequet and Shalika [JS1] show that the factors L(s, Trv x 7r~) 
! and fi(u; W, W~,fs) are equal whenever ~rv and r~ are unramified (and non- 

archimedean), and W and W ~ are spherical. The more general situation is 
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investigated by Jacquet, Piatetski-Shapiro, and Shalika [JPS] in the case of 

nonarchimedean v, and by Jacquet and Shalika [JS3] in the case of archimedean 

v. In either case, it is shown that  the quotient 

• (v; W, W', fs)/L(s, rv × ~ )  

has, as a function of s, an analytic continuation, and a functional equation under 

the simultaneous replacement of s by 1 - s and of ~ and ~ by their contragredient 

representations. (In [JPS], [JS1], [JS2], and [JS3], the local integrals in question 

are of a slightly different form, involving a Schwartz function (I) on F~. How- 

ever, the results just stated regarding such integrals apply, by arguments in [GS, 

pp. 51-56], also to our integrals ~(~; W, W', fs)-) The investigations of [JPS] and 

[JS3] actually take place in the broader setting of GL(n, Fv) × GL(n', Fv), for n' 

not necessarily equal to n. 

The purpose of the present work is to show that, under certain circumstances, 

the archimedean places behave like the nonarchimedean ones. Namely, let us 

for v real or complex, are return to the case n ~ -- n, and assume that  7r. and ~,,  

spherical principal series representations with trivial central characters. (For ex- 

ample, this will be true if u and ~r' are representations associated with GL(n, Z) 

Maass forms. See [Bu3] for a discussion.) In particular, ~ and ~' are, by defini- 

tion (of principal series representation), irreducible. We prove that, under these 

conditions, 

(0.3) tI,(u; W, W', fs) = L(s, 7r, × 7r',), 

for spherical Whittaker functions W and W'. We remark that this result verifies 

a conjecture of Bump [Bu3], previously known to hold only in the cases n = 2 

(cf. [J]) and n = 3 (cf. [Stl]). We also note from [JS3] that, in the situation at 

hand, the right-hand side of (0.3) is by definition (a factor independent of 7r~ and 
' times) a certain product of n 2 gamma functions. 71" v 

Our result may have applications to generalizations of problems mentioned 

above. For example, the work of Moreno [M] on Fourier coefficients of GL(2, Z) 

Maass forms, and that of Shimura [Shi] on special values of L(s, 7r, ¢), both 

require explicit evaluation of the archimedean integral ~(v; W, W', fs) in terms 

of gamma functions. Higher-rank analogs of these studies would likely require 

the corresponding formula (0.3). 

The starting point for our proof of (0.3) will be the expression of the local 

integral ~(u; W, W ~, f~) as a (generalized) Barnes integral. By this we mean a 

(perhaps iterated) complex contour integral of a ratio of products of gamma func- 

tions. (See section 2 below for the precise definition.) This expression will allow 
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the application of a new identity - -  Lemma 2.2, below - -  for Barnes integrals to 

the evaluation of ~(v; W, W ~, fs). 

Lemma 2.2 is of some independent interest. Indeed this lemma, according 

to which a certain m-fold Barnes integral reduces to an ( m -  1)-fold integral, 

may be considered a generalization of "Barnes' (First) Lemma" [Barl], which 

is a central result in the theory of Barnes integrals. (We recall Barnes' Lemma 

in equations (2.3), below.) In addition, our Lemma 2.1 (which is required in 

the proof of Lemma 2.2) represents a new identity for single Barnes integrals. 

As such, Lemma 2.1 complements an already extensive list of such identities. 

For other examples, and for a discussion of Barnes' Lemma and some related 

formulas, see [Bai]. 

The connection between Barnes integrals and the archimedean theory of au- 

tomorphic L-functions was first noticed by Bump, and has also proved fruitful 

in a context somewhat different from (but parallel to) that  of (0.3). Namely, 
be spherical principal series representa- suppose v is archimedean; let Try and 7r v 

tions of GL(n,  F~) and G L ( n -  1, F~) respectively, with trivial central characters. 

is a local L-factor, which is a product of n(n - 1) Associated with 7r~ and r .  
gamma functions, and a local integral analogous to (0.2). (See [JS3] for details.) 

Bump [Bu2] proved, using "Barnes' Second Lemma" [Bar2] for Barnes integrals, 

that this local integral and L-factor agree in the case n -- 3, and conjectured 

[Bu3] that  this should hold for general n. In [St3] we have recently verified this 

conjecture, also by way of Barnes integrals. 

Regarding more general values of (n, nt), it should be noted that the analogous 

archimedean integral and L-factor will not always be equal. This may be seen 

even in the case (n, n ~) = (3, 1), cf. [Bul]. Indeed, heuristic arguments of Bump 
[Bu3] strongly suggest that  such equality will obtain only when In - n'[ <_ 1. 

The present paper will proceed as follows. In Section 1 we state our main 

theorem (Theorem 1.1), by reformulating (0.3) in language more specific to 

the situation of interest. Under this reformulation, the integral ~(v; W, W ~, ]s) 

is reinterpreted as a certain integral ~n(s;a ,b)  of Whittaker functions, where 

a, b C C n are associated with r .  and ~r~ respectively. Section 2 contains infor- 

mation concerning Barnes integrals, including the two lemmas mentioned above. 

In Section 3 we express ~n(s; a, b) as a Barnes integral, by first writing it as a 

convolution of Mellin transforms of Whittaker functions for GL(n,  F~,), and then 
using known formulas for these Mellin transforms as Barnes integrals themselves. 

We also recall some known cases where such Mellin transforms (or, more exactly, 

residues thereof) reduce to Mellin transforms of GL(n  - 1, Fv) Whittaker func- 
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tions. In Section 4 we prove Theorem 1.1, essentially as follows: we apply Lemma 

2.2 to our Barnes integral expression for ~ (s; a, b). Examining our integral after 

this application, we see (by virtue of the residue formulas just mentioned) that  

we are left with a convolution of Mellin transforms of GL(n - 1, F~) Whittaker  

functions. Our theorem then follows by induction on n (the case n = 2 being 

equivalent, as we will see below, to Barnes' Lemma).  

ACKNOWLEDGEMENT: We would like to thank Dan Bump and Sol Friedberg 

for several valuable conversations regarding, and numerous specific suggestions 

for improving, this manuscript. 

1. Def in i t ions  and n o t a t i o n  

We will, for the remainder of the paper, restrict our attention to the case Fv = R. 

The case Fv -~ C is nearly identical, because of the similarity (cf. [St2]) between 

spherical Whit taker functions on GL(n, R) and those on GL(n, C). 
Let Xn C GL(n, R) be the group of upper triangular, unipotent matrices, and 

let Yn C GL(n, R) be the group of diagonal matrices y of the form 

y = diag(yly2 • • • Yn-1, Y2Y3"" "yn-1, .  •., Yn-1, 1), 

w i t h y j  E R + for 1 ~ j _~ n - 1 .  Let Zn denote the center of GL(n,R) .  Also 

let al ,au, . . . ,an-1 E C, and define a C C ~ by a = (al,a2,. . . ,an) where an = 

- a l  - a2 . . . . .  an-1.  Then the map )/~ : X,~Y,~Z,~ ~ C given by 

n--1 j 

j = l  k----1 

is a quasicharacter of XnYnZn, and may be induced to a representation 

of GL(n, R). This latter representation, which we denote by ~r(a), will be 

irreducible for almost all values of a. Assuming, as will will henceforth unless 

otherwise stated, that  a is such a value, ~(a) is a so-called spherical principal 
series representation o] GL(n, R). Note that,  by our construction, r ( a )  has 

trivial central character. 

A spherical Whittaker function Wn,a(g) for r ( a )  is a function on GL(n, R) such 

that  

(a) the restriction, to the space of right translates of Wn,a(g), of the regular 

representation of GL(n, R) is isomorphic to r (a ) ;  

(b) Wn,,~(xg) = e2ri(~l"2+x2'3+'"+x'-"")Wn,a(g) for x e X,~ and g e GL(n, a);  

(c) Wn,~,(gkz) = Wn,~(g) for g C GL(n ,R) ,  k e g n  = O(n,R) ,  and z e Zn; 
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(d) W~,a(y) is bounded as any yj -~ ec. 

Such a function Wn,~(g) is known to exist and, by multiplicity-one theorems of 

Shalika [Sha] and Watlach [Wa], to be unique up to constant multiples. 

By the Iwasawa decomposition GL(n, R) = X,Y~Z~Kn, Wma(g ) is determined 

by its restriction to the subgroup X~Yn; by property (b) of Whittaker functions, 

we may write 

W,~,a(xy) = e2~i(xl,2+z:,a+'"+z"-~,")W,,a(y). 

The function W,,a(y) is itself often called a "GL(n,R) spherical Whittaker 

function of type a." 

As noted above, L(2s, 7r(2a) × ~r(2b)) is essentially equal to a product of n 2 

gamma functions. Moreover, the local integral kO(R; Wn,2a, Wn,2b, f2s) (see (0.2) 
above), which we will denote more simply by ~n(s; a, b), may be given by 

(1.1) 
n--1 

V.(s; a, b) = r(ns) f(~÷)~_~ W.,2~(y) W,~,2b(y) 1--[ (rYJ)2~(2YY ('~-~)) dyj 
j=l YJ 

(The given normalization of this integral, and of the variables appearing in it, 

will prove convenient in what follows.) In particular, equation (0.3) amounts, in 

the context presently under consideration, to the following theorem, which we 

prove in Section 4 below. 

THEOREM 1.1: Let aH notation and assumptions be as above. Then 

~n(s;a,b)= ~I  F(s+aj+bk). 
j , k = l  

That is, the local L-factor and its associated local integral are, in this case, the 
same. 

2. Iden t i t i e s  for Ba rnes  in tegra ls  

We now define, and develop some properties of, Barnes integrals, which will play 

a significant role in what follows. 

A (single) Barnes integral is one of the form 

M N 

(21) H rcJ + z) H (vk - zl z, 
Zj=l k = l  
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where M , N  are nonnegative integers; Ej,6k ---- i l ;  Uj,Vk E C. The path of 
integration is a line parallel to the imaginary axis, indented if necessary to insure 

that any poles of 1-IM1 r ~ (uj + z) are to the left of this path, while any poles 

of l-Ik=lN r~k (Vk -- Z) are to its right. (Note that poles arise only for those j with 

Ej -- 1, and those k with 5k = 1, since the gamma function is never zero. Note 

also the tacit assumption that,  if ej = 6k = 1, then uj ÷ vk ~ Z; otherwise the 

path of integration could not be chosen as above.) In this paper, unless otherwise 

specified, the path of integration of any Barnes integral will always be of this form. 
It may be shown that  the integral (2.1) converges absolutely, and uniformly 

for the real parts of the uj's and the vk's in compact subsets of the real line, 

provided 
M N 

j : l  k = l  

Indeed, such convergence follows from "Stirling's formula" (cf. [WW, Section 

13.6]): 

(2.2) lim Ir(x + iy)leV Y Dyl½ = ly[-+~ 

(x and y real), uniformly for x in compact subsets. In particular, all (single) 

Barnes integrals in this paper are, for these reasons, convergent in this way. 

Multiple integrals that  are of the form (2.1) in each variable of integration are 

also called Barnes integrals (or, sometimes, generalized Barnes integrals). For 

example, in Section 3 we will express q2~ is; a, b) as such an integral, by writing 

it as a convolution of the Mellin transforms Mn,~(') and Mn,b(') of W,~,2~(y) and 

Wn,2b(y) respectively, and observing that  these Mellin transforms are themselves 
expressible as Barnes integrals. 

Stirling's formula (along with, if necessary, induction arguments) may be used 
to demonstrate the absolute convergence of all multiple Barnes integrals encoun- 

tered in the present work. Thus our frequent permutations, below, of the orders 

of integration in such integrals are justified. 

Barnes [Bar1] [Bar2] investigated various situations under which integrals like 

(2.1) reduce to ratios of products gamma functions. One such situation is encap- 

sulated by "Barnes' Lemma" [Bar1], which may be stated as follows: 

1 f r ( , + ~ ) v ( z + z ) r ( ~ - z ) r ( ~ - z )  dz = C(c~+-f, c~+5, c~+/3+.),+~) (2.31) 

for c~,/3, % 6 E C, where 

(2.35) v, q) = r ( u ) r ( , ) r ( q  -  )r(q - ,) 
r(q) 
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Our  L e m m a  2.2 below may  be considered as a generalization, to a certain mult iple  

Barnes integral, of Barnes '  Lemma.  

In order to prove L e m m a  2.2, we will first need the following. 

LEMMA 2.1: I f  R + r - F - G - H - f - g - h = 0, then 

f C(F+z,  z, z)V(f z , g - z , r - z ) r ( H + z ) r ( h - z )  G + R + dz 

= . L C ( F + z , G + z , F + G + h + z ) C ( f -  z , g -  z , f + g + H - z )  

- r ( r  - f - g + z ) r ( R  - F - a - z )  d z .  

Tha t  is, the integral on the left-hand side is invariant under the substitutions 

(2.5) H - - ~ r - f - g ;  h - ~ R - F - G ;  R--~F+G+h;  r---~f+g+H. 

Proof'. Into  Barnes '  L e m m a  (2.3a), we put  

= t~; fl = H;  -y = h; 5 --- t2. 

We mul t ip ly  bo th  sides of the result by 

F ( R  - F - a + t l ) F ( F  - t l ) r ( G  - t l ) r ( r  - f - g + t 2 ) r ( f  - t 2 ) r (g  - t2) 

2~-i 

and integrate  in t l  and t2,  whence 

(2.4) f .  F ( H  + z ) r ( h  - z) 

{'J:, ) • ~-~ F(z  + t l ) r ( R  - F - G + t~)r(e - t,)F(G - t~) dtl 

{ 1 I 2  } • ~ r ( - z  + t 2 ) r ( r  - f - g + t 2 )F ( f  - t 2 ) r (g  - t 2 )  dt2 dz 

1 ftt C(tl+h,t~+t2, t ~ + H + h + t 2 ) F ( R - F  G + t ~ )  
2~ri ,t2 

• r ( F  - t ~ ) r ( G  - t l ) r ( r  - f - g + t 2 ) r ( ]  - t 2 ) r ( g  - t2)dtldt2 

_ r(H2~ri + h) f t ,  r ( R  - F - G + t ~ ) r ( F  - t l ) r ( G  - t l ) r ( h  + t~) 

i 2 r ( r  - f - g + t 2 ) r ( f  - t 2 ) r ( g  - t 2 ) r ( g  + t2 )r ( t~  + t2) dt2 
• F ( H  + h + t ~  + t 2 )  dt~.  

Here the pa ths  of integrat ion in t l  and t 2 a r e  as described above for Barnes  

integrals. 
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Now note t ha t  the lef t-hand side of  (2.4) is, by (2.3a), equal to the integral  on 

the lef t-hand side of our lemma.  So it suffices show tha t  the right-hand side of 

(2.4) is invariant  under  (2.5). This  invariance is clear, since (2.5) takes H + h to 

r - f - g + R - F - G = H + h .  So our l e m m a  is proved. | 

We now prove a "reduction formula" t ha t  expresses an m-fold Barnes integral  

of a cer tain kind as an (m - 1)-fold integral. This  formula  will be central  to our 

proof  of Theo rem 1.1 (cf. Section 4): in this proof, we will express kO~(s; a, b) in 

te rms  of k ~ n - l ( S -  (al + b l ) / ( n -  1) ,a ' , b" ) ,  for appropr ia te  a", b',  and apply  

induction on n. We remark  tha t ,  here and in what  follows, a "zero-fold" Barnes 

integral  s tands  for the integrand itself. (Also, an  e m p t y  p roduc t  is unders tood  

to equal 1.) 

LEMMA 2.2: Suppose m C Z + and, for 1 < j < m - 1, Pi  - Fj - G i = H and 

pj - f j  - gj = h. Then, for any L, i, zo E C, we have 

m--1 ] 
~z [ I-[  C(Fj  -~- zj '  Gj + zJ' PJ + ZJ + ZJ+I ) C ( f  j - zJ' gJ - zJ' PJ - ZJ - ZJ+I ) 

1 ' ' ' "Zm = j : l  

• r ( L  + z ~ ) r ( ~  - z ~ ) r ( H  - Zo + z ~ ) r ( h  + zo  - ~) dz~'" d~  
m--I =2rifjzl~...,Zm_l [~__ C ( F j + z j , G 3 + z j , F j + G j + h + z j - - I + Z j )  

"C(f j  -- Zj, gj -- Zj, f j  + gj + S -- Zj--1 -- Zj)] 

"C(h + L + Zm--I ,H + h , H  + h + L + ~ ) d z l . . . d z m _ l .  

Proof" The  proof  is by induction on m: the case m = 1 is jus t  Barnes '  L e m m a  

(2.3a). 
So we assume m > 2 and note tha t ,  by a rea r rangement  in the order of 

integrat ion,  the quant i ty  on the lef t-hand side of our l emma  equals 

(2.6) 
m- - 1  

2,...,Zm [ jl-i2 C(Fj  + zj '  GJ + zJ' PJ + zJ + zJ+l ) C ( f  J - zJ' gJ - zJ' PJ - ZJ - ZJ+l 

• F ( L  -~- Z m ) F ( ~ - Z m ) ~ f  c ( g  1 + zl,al--~- z l ,g l  -~- Zl"~ z2 )  
~.Jz 1 

• c ( f l  - z l , g ~  - Z l , p ~  - Zl  - z 2 ) r ( H  - zo  + zl)r(h + Zo - z~)  d z l } d Z 2 . . . d z , ~ .  

After an appl icat ion of L e m m a  2.1, along with  the conditions P1 - F1 - G1 = H 
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and pl - f l  - gl = h, to the quantity in braces, we find that (2.6) equals 

(2.7) 
'r~--I 

fz2 ..... Zm [ j~__2 C (Fj + zj , Gj + zj , Pj -{- zj + zj+ l )C ( f j - zj , gj - zj ~ pj - zj - zj+ l ) ] 

• r ( L + z m ) r ( e - z m ) ~ /  C(F1 + z i ,G1-} -Z l ,F l  -~-Gi-}-h-}-Zonc Zl)  
(Jz 1 

• C( f l  - z l ,g l  - zl,  f l  + gl + H - Zo - zl)r(h  + zl  - z 2 ) r ( H  - z~ + z2)dZl} 

• dz2. ."  dzm 

= / C(FI+z l ,  G l+z l ,  F l - t - G l + h - ~ z o + z l ) C ( f l - z l ,  g l - Z l ,  f l + g l + H - z o - z l )  
Jz 1 

m-1 

"{/12 ..... Zm [ j~--2 C(Fj  + zj '  G j +  Zj' Pj ic  z j '}-Zj+I)C(f  j - zj '  gj - Zj' Rj - zj - Zj÷I) 

• r ( L  + z m ) r ( e  - z . J r ( H  - z l  + z 2 ) r ( h  + zl - z2) dz2 . . ,  dzm} dz l  

(at the last step, we have again permuted the order of integration). 
Now note that, by our induction hypothesis, the integral in braces on the 

right-hand side of (2.7) equals 

rn,--1 

2ui~2,...,zm_l [ jl~2 C(Fj + _  Z j , G j +  z j , F j + G j ÷ h +  z j - l +  zj) 

• C( f j  - zj, gj - zj, f j  +gj  + H -  zj_~ - zj)] C ( h + L + z m _ ~ ,  H +  h, H +  h + L  +~) 

• d z2""  dzm-1. 

Then the right-hand side of (2.7) itself clearly equals the quantity on the right- 
hand side of our lemma, and we are done. | 

3. Mellin transforms of  spherical Whittaker functions 

We wish to write the integral (1.1) as a convolution of Mellin transforms of 
GL(n, R) spherical Whittaker functions. To do so, we begin with a definition: 
if s e C ~-1, then the (normalized) Mellin transform Mn,a(s) of Wn,2a(Y) (cf. 
Section 1) is given by 

n--1 

(3.1a) /~,~,a(s) = f(R+)--~ Wn,2a(Y) H(Tryil2"¢(2Yj-J("-J)/2) dyj • 
j=l YJ 
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It is shown in Theorem 2.1 of [St3] that  the integral in (3.1a) converges absolutely, 

and in fact decays exponentially as a function of the Im(sj) 's,  as long as each 

Re(sj) is sufficiently large compared to all the - Re(ak)'s. (The normalization we 

have given our Mellin transform is justified by the relative absence of cumbersome 

powers of 2 or 7r, in equations (3.2) and (3.3) below.) 

The Mellin inversion formula then gives 

(3.1b) 
n--1 

1 j f  ~ (~ry .,~-2Zjyj(n-j)/2 dz. ,  
W n , 2 a ( Y )  --  (~71.~)n_l M n , a ( z )  1 - I  •, J] j ? 

l '""Zn--1 j = l  

the path of integration in each zj being a vertical line in the complex plane, 

indented if necessary to keep the poles of Mn,,~(z) on its left. 

We now note that ko,~(s; a, b) may be expressed as a convolution of M~,a(.) and 

Mn,b('), as follows. If we define 

~zj = j s  -4- zj (1 <_ j < n - 1), 

and write 

Z = ( Z l , . . .  , z n - 1 ) ;  

then (1.1), (3.1a), and (3.15) yield 

s z = (sZl~.. .  ~ SZn-1), 

(3.2) • n(s; a, b) --- r(ns) 
n--1 

+),-1 (2ri)  n-1 1,...,z~-1 j=l  

rt--1 

• w~,:b(y) 1-I (~y~)2"(2yTJ(~-J)) ~y~ 
j=l YJ 

1 J'z Mn,a(z) 
= F(ns) • (27ri)n_ 1 1 .. . . . . . .  1 

n--I 

• {~  wo,2b(y) 1-I (-y,)~'-:~J(2y;J'°-J' /~)  dYJ ~dz~ • •. dzn-1 
+),~-1 yj J j = l  

1 ~zz Mn,a(Sz)Mn,b(-Z) d z l . . ,  dzn-1.  = r ( ~ )  • (27ri)n_ 1 , ..... z~_x 

(At the last step, we have substituted zj --+ Szj for 1 < j < n - 1.) The 

manipulations in (3.2) are formal, but may be justified for Re(s) sufficienty large 

(compared to the - Re(ak)'s and the - Re(bk)'s) and for appropriate contours of 

integration in the zj's. The end result of these manipulations holds, by analytic 
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continuation arguments, as long as these contours separate the poles of Mn,a(Sz) 
from those of M~,b(--z). 

Equation (3.2) will now allow us to apply known facts concerning Mn,a(S) to 

the evaluation of kVn(s; a, b). We summarize the facts we will need: all of these 

come from [St3]. 

We begin by writing Mn,~(s) as a contour integral involving a lower-rank Mellin 

transform. Namely, Theorem 2.1 in [St3] gives (if C(u, v, q) is as in (2.3b)): 

(3.3a) 

M,,a(s) = F(Sl + a l ) F ( s , _ l  - a l ) -  (27ri)n_ 3 ..... t~-3 

n--2  

• [jH1C(tj_ +s j , t j -1  + a 2 - ~ - 8 j , t j - 1 - t - t j  +al  q-a2 q-s j+ sj+l)]dtl " .dtn-3,  

where 

( j (a i+a~))  . 
(3.3b) t ' =  - t j  n Z-2 1_<j<.-3' 

(3.3c) "~= ('~j)l<j<n_2 = (aj+2 -~ a +---~ ) • 
-- - n l<_jSn_2 

(3.3d) to = 0; tn-2 = --az - a2. 

(Our notation here is somewhat different than that of [St3]: what we called c 

there is denoted by 3 here. Also, the product on j in the integrand here is a re- 

ordering of the one appearing there.) The paths of integration are vertical lines, 

indented if necessary so that all poles of/~rn_2,~(t ~ (considered as a function of 

the tj 's) are to the right of these paths, while all poles of the product on j (also 

as a function of the tj 's) are to their left. (In [St3], we consider only paths that 

are vertical lines per se; for this to be possible the sj 's must have real parts 

sufficiently large compared to those of the - -ak ' s .  ) 

In order that  the right-hand side of (3.3a) make sense in the cases n = 2 and 

n = 3, we define 

Mo,a(s) = Ml,a(s) = 1. 

We also understand the factor (2ri)  3-n, and the contour of integration, to appear 

only if n - 3 > 0. In particular, (3.3a) then yields 

(3.4) M2,~( s )  = r ( s  + a ) r ( s  - a) 
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where, by an abuse of notation, s -- sl and a = (al, a2) = (a, - a ) .  This formula 

is well-known, cf. [Bul]. 

We may now write q2,~(s; a, b) as a multiple Barnes integral. Namely, by com- 

bining (3.2) with (3.3a), we get 

(3.5) q2n(s; a, b) = F(ns) 

• 1 fz  r(Szl + a l ) r (Szn-1  - a l ) r ( - z l  + b l ) r ( - z . _ l  - 51) 
( 2 ~ i ) " - ~  ~ . . . . .  z . _ ~  

1 

• C ( t j  + S z  . .  ~ , t j _ l + a 2 + S z j , t j - l + t j + a l + a 2 + S z j + S Z j + l )  d t l  . d t ~ - 3  

n--2  

~ j = l  

• dZl • • • d z n _ l ,  

where ~ bears the same relation to the z j ' s  and to b as t 'does to the tj 's and to 

a (cf. (3.3b)); b bears the same relation to b as ~ does to a (cf. (3.3c)); x 0  = 0;  

and x n - 2  = - b l  - b2. 

Our proof below of Theorem 1.1 will also require some information, which we 

now recall, regarding residues of Mn,~(s ) .  Specifically, we have 

(3.6a) lim ( s l  + a l ) M n , ~ ( s )  = F(aj - al) -1,~,,(s"), 
sx --~-  aa LJ = 2  

where 

(3.6b) a " =  ( a j + l +  a~i-ll) ; s " =  ( s j + l + n - l - J a l )  
l<_j<n-1 n - 1 l<_j<n-2 

Indeed, equations (3.6) are just the case k = 1 of Theorem 3.2 in [St3]. 

For our computations below, it will in fact be useful to rewrite (3.6a), using 

equations (3.3). To do so we note that, on the right-hand side of (3.3a), the 

variable sl appears only in F(sl + al) and in the j = 1 factor in the product. 

Since the gamma function has a simple pole, of residue one, at zero (and since, 

again, to = 0), we compute from (2.3b) that 

(3.7) lim (Sl + al)P(Sl + a l ) C ( t l  + s l ,  to + a2 + s l ,  to + t l  + a l  + a2 + s l  + s2) 
81 " + - - a l  
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r(t~  - a~)P(a2 - a~ )r ( s2  + a l  + a2)r( t~  + s2 + a~) 

r ( t l  + s2 + a2) 

Combining (3.3a), (3.6a), and (3.7), we get 

(3.8) F(s ,_z - a l)r(s2 + a~ + a2) 

1 f ~ ..~ r ( t~  - a~) r ( t~  + s2 + a O  
" Jt Mn-2"d(t) F ~ - ~ s 2  -~ (27ri) n-3 ~ ..... t._3 

n - - 2  

• [~_2C(tj_ -[-8j , t j - lq-a2+sj , t j -1  +t j -Fal-Fa2q-s j  +sj+l)]dtl'"dtn-3 

with a" and s" as in (3.6b). We remark that the interchange of the limit in 

(3.6a) with the integral in (3.3a) is valid, for appropriate choice of the con- 

tours of integration, provided the poles in tl  of F(tl  - al) are disjoint from 

those of ~rn_2,~(t" ). But, as is shown in [St3], the latter has its leftmost pole at 

tl  = min{a3, a4 , . . ,  a~}. So we need only assume that  al < min{a3, a4 , . . . ,  a~}. 
Analytic continuation arguments insure that we do not, in our application be- 

low of (3.8), suffer any loss of generality by making this assumption. (Strictly 
speaking, we axe assuming that a is such that ~r(a) is irreducible. However, the 

Whittaker function W,~,2~ may in fact be extended to a holomorphic function 

of a. So, in applying the analytic continuation arguments just mentioned, we 

needn't worry about the measure-zero set of values of a where ~r(a) is reducible.) 

4. Proof of Theorem 1.1 

We proceed by induction on n: the case n = 2 follows directly from formula (3.2) 

for ~n(s; a, b), formula (3.4) for M2,~(s), and Barnes' Lemma (2.3a). 

So we assume n > 2, and consider (3.5). We change the order of integration, 

and recall that  %j = zj + js, to get 

1 ~ _~n_ 2,~.( ~- ) (4.1) , I , , (s ;  a, b) = r ( n s ) .  (27ri)--3 1 ..... ~n-3 

1 A 
(27ri)n_3~xl ..... x,_3 Mn_2~(~) .  { 1 f o 

' (271"i)  n - 1  J Z l  . . . . .  z n - 1  

n - - 2  f 

• ] I I  c ( t j  + z. , t j_,  + . 2 + J s +  zj, t j_l + t . + a l  + . 2 + ( 2 j  + + zj + 
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• C ( x j  - z j , x j _ l  + b2 - z j , x j - x  + x j  + bl + b2 - z i - Zj+l)l  

• F(zn-1 + (n - 1)s - a l ) r ( - z n - 1  - bl)r(z~ + s + a l ) F ( - z l  + bl) d Z l . . ,  d z , _ l }  

• dtl  .. • dtn_3 dxl  • .. dxn_3. 

If we define zo = O, then we may apply Lemma 2.2, with m = n - 1, to the 

integral in braces; (4.1) then reads 

(4.2) kO,~(s; a, b) = F (ns ) .  (2~ri),~_3 1 ..... t .-3 Mn-2 '~( t ' )  

M 2 , ~  ( ~ )  ( 2 . i ) . - 2  ( 2 ~ i ) - - ~  ~ . . . . .  ~ ° _ ~  , . . . . .  ~ ° _ ~  

n - - 2  V 

• [ U C ( t j  + j s  + zj ,  t j -1  + a2 + j s  + zj,  t j -1  + tj + a2 + hi + 2is  + z j -1  + zj)  
I 

L j = I  

• C ( x j  - z j , x j - 1  + b2 - z j , x j _ l  + x j  + al + b2 + s - z i_ l  - z j)  I 

s+al+b~,  ns)  dz~ . . . dz,~_2 }dt~ . . . dt~-3 dx~ . . . d x , - 3 .  . C ( ( n - 1 ) s - a l + b l  +z~£_2, 

Changing once more the order of integration, and again using the fact tha t  Szj = 

j s  + zy, we find from (4.2) tha t  

(4.3) ~n(S; a, b) = r ( s  + al  + bl)F((n - 1)s - a l  - bl) 

1 ~ { 1 f l ~ n _ 2 , ~ ( ~ ) F ( _ a l + b l + s + S z n _ 2 )  
" ( 2 7 r i )  n - 2  a . . . . .  z n - 2  (271"~  n - 3  . . . . .  t n - 3  

r t - - 2  

" [j l-I ic(t j  + SzJ' t j -  l + a2 + Szj' t j - l  + tj  W a2 + bl + s W Szj-  l T SzJ)] dtl  " " dtn-3 

• ( 2 ~ i ) - - ~  M _ ~ ( ~ ) r ( a ~  - b~ + ~ - ~ _ 2 )  
1 ~*-- ,Xn-3 

n - - 2  

L j = l  

• d z l ' "  dzn-2.  

Let us examine carefully the integral in the t j 's ,  in (4.3). If we define 

al  + b l  + s  al  +bx + s * 
a l * = - b l - s +  n ; a j = a j +  n (2_< j_<n) ;  

• ( ) s j = b l + s + ~ z j _ l _  j a l + b x + s  ( 2 < j _ < n - 1 ) ,  
n 
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and make the change of variable 

. ( a l + b l + s )  
t j  = t j  + j n 

for 1 < j < n - 3, then (since (al + 51 + s ) / n  = (al + a2 - a~ - a~) / (n  - 2)) we 

find that 

(4.4) 1 f t l  ~ r ~ - 2 ' z ( t ' ) r ( - a l  + 51 + s + Szn_2) 
(2ri) n-a ,...,t~-3 

• C ( t j + S z j , t j - l + a 2 + S z j , t j _ l + t j + a 2 + b l + s + S z j _ l + s Z j )  d t l . . . d t n _ 3  
%4=1 

= r(s + a~ + ~ ) r ( ~ _ l  - a~)r (~  + a~ + a~) 

1 ~ ~ 2^(~)r(t~-a~)r(t~+s;+a~) 
(2ri)n-3 *, - . . , t~ -3  n -  ,a* r(t7 + s~+a;)  

Tt--2 
• s~+l )  dt~ . . d t *  3 C(t~ A- s j ,  t j_  1 A- a 2 + s j ,  j - 1  + tj  + a 1 sj 

where ~ bears the same relation to the t~'s and to a* as t'does to the tj 's and to a 

(cf. (3.35)); a* bears the same relation to a* as ~ does to a (cf. (3.3c)); t~ = 0; and 

t* ,~-2 -a~ - a~. (We have also used the fact that C(u,  v, q) = C(q - u, q - v, q), 

cf. the definition (2.3b).) Comparing (4.4) and (3.8), we conclude that 

1 ft, ~-2'x(t ')P(-al + bl + s + ~z.-2) (4.5) (2ri) '~-3 ..... t~-3 

INn--2 ] 
• [ . C ( t j + S z j , t j - 1  + a 2 + S z j , t j - 1  + t j + a 2 + b l  + 8~-Szj-1 nt-Szj) d t l ' " d t n - 3  
"j=l 

; r ( s + a ~ + b l )  r(a; - a ~ )  M~_I,(~.),,((~ )) 

= r(s+aj+b~) - 1 . a , , ( ( z j + j ( s - a l / ( n - 1 ) ) ) l < _ j < _ n - 2 ) ,  

since a bit of algebra shows that 

a ~ - a * l = s + a j + b l  (3 < / <  n); 

(. ( al) 
( a* )"=  a J + l + n - 1 / l < j _ < n _ l =  a j + l + ~  1<_j<,~-1 

(. o1 o ) ( j ) 
= s J + l +  n - - 1  l<j<_n-2 z j + j s  n -  i al l<j<n-2 
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Now to evaluate the integral in the xj 's ,  in (4.3), we may simply substi tute 

t j  --~ x j ;  bj ++ aj;  z j  t-~ - Szj 

(for all relevant j )  into (4.5). The result is 

1 f~ ~ _ 2 , g ( ~ ) F ( a l  - bl + s - zn-2) (4.6) (2~'i) ~'-3 1 ..... :~,,-z 

['v[n-2 1 
• i x  C ( x j - z j , x j _ l + b 2 - z j , x j _ l + x j + a l + b 2 + s - z j _ l - z j )  d x l " ' d x n - 3  
~j=l 

= r ( s + a l + b j )  Mn-l,b,,((-zj-jbl/(n-1)))l<_j<_n-2). 

Combining (4.3), (4.5), and (4.6) then yields 

(4.7) ~ . ( s ;  a, b) 

= r ( s  + a l  + b l ) r ( ( n  - 1)s  - a~ - b~) r ( s  + aj + b~)r(~  + a~ + kS) 
~j=2 

1 fz A 
(2ri)n_2 M , - 1 , a " (  (zj + j ( s  - a l /  (n - 1)))l<S_<n-2) 

11...~Zn--2 

• Mn-l,b, ,  ((--z  s -- j b l / ( n  - 1))) l<j<n-2) d z l . . ,  dz~-2 

[jl~2 ] ( a l + b l )  = r ( s + a ~ + b l )  r ( s + a j + b l ) r ( s + a ~ + b s )  ~ - 1  s --  ,a" ,b"  • 
_ n 1 ' 

at the last step, we have substi tuted z s -+ z s - j b l / ( n -  1) for 1 < j < n - 2, and 
applied (3.2). By our induction hypothesis, (4.7) reads 

%~(s; a, b) - F(s + a 1 ~- bl) 

• P ( s + a j + b l ) F ( s + a l + b j  F s - - - a l n _ l  +bl+aj+b" 
~S=2 j ,k=l  

= F(s + al  + bl) F(s + a s + b~)r (s  + a~ + bs) F(s + aj + bk). 
~j=2 j,k=2 

But this is precisely the s ta tement  of Theorem 1.1, and we are done. | 
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