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ABSTRACT

The Rankin-Selberg method associates, to each local factor L(s, 7, X 7},)
of an automorphic L-function on GL(n) X GL(n), a certain local integral
of Whittaker functions for 7, and «,. In this paper we show that, if v is
archimedean, and 7, and =}, are spherical principal series representations
with trivial central character, then the local L-factor and local integral
are, in fact, equal. This result verifies a conjecture of Bump, which
predicts that the archimedean situation should, in the present context,
parallel the nonarchimedean one.

We also derive, as prerequisite to the above result, some identities for
generalized Barnes integrals. In particular, we deduce a new transforma-
tion formula for certain single Barnes integrals, and a multiple-integral
analog of the classical Barnes’ Lemma.

Introduction

Let m and =’ be automorphic cuspidal representations of GL(n,A), where A
denotes the adeles over a global field F. One may then define a global L-function
L(s,mxx'"), which bears on a number of problems in automorphic forms and rep-
resentations. For example, suppose 7 represents a primitive cusp form of weight
k and character x on I'o(N): Shimura [Shi] has deduced, from the expression of
L(k — 1,n,7') (for appropriate 7’) as a Petersson inner product, the algebraic-
ity of special values of twisted Langlands’ L-functions L(s,w, ). (Here v is a
primitive Dirichlet character modulo N, and L(s, w, ) is properly normalized.)
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Another example is the fact — demonstrated by Jacquet [J] in the case n = 2, and
by Jacquet and Shalika [JS2] in the general case — that the partial L-function
Lg(s,m x w'} (which is closely related to L(s,m x n’)) has a pole at s =1 if and
only if m and 7’ are contragredient representations. This latter result itself has
several applications: one such is to growth estimates for Fourier coefficients of
Maass forms, cf. the work of Moreno [M] in the case n = 2.

The analytic properties of L(s, 7 x ') may be studied by means of the global
integral

(0.1) ¢(9) ¢'(9) E*(9,5) dg;

/Z,,(A)GL(n,F)\GL(n,A)
here ¢ and ¢’ are cusp forms in the spaces of 7 and =’ respectively, and E*(g, s)
is an Eisenstein series. (Z,(A) denotes the center of GL(n,A).) As a function
of s, this integral has meromorphic continuation and a functional equation (both
inherited from the Eisenstein series). To deduce similar properties of L(s, 7w x 7'),
one writes both this global L-function and the above global integral as products
of local factors, and then compares at each place of F the local L-function with
the local integral.

More specifically, let us write 7 = ®,,, with 7, a representation of GL(n, F,)
for each place v of F' (and similarly for n’). Then we have the factorization
L(s,m x ') = [, L(s,®, x 7). Moreover, by the Rankin-Selberg unfolding
method, the integral (0.1) may be expressed as [], ¥(v; W, W', f,), where

02  wwww.n)= [ W) W'(9) 1.(g)do.
Z.(F,)Xn(F.\GL(n,F,)

Here X,(F,) C GL(n,F,) is the subgroup of upper triangular, unipotent

matrices. Also W (resp. W') is a Whittaker function for m, (resp. =), and

fs 1s in the space of the induced representation

Ind(GL(n,F,),P(n— 1,1, F,), 6%),

where 0 is the modular quasicharacter of the standard parabolic subgroup
P(n — 1,1,F,) (with Levi factor GL(n — 1) x GL(1)). (We will elaborate on
L(s,m, x m,) and U(v; W, W', f;), in the particular case of interest to us, in
Section 1 below.) The problem is then to determine the extent to which
U(v; W,W', fs) reflects L(s,w, x «,), for each v.

To this end, Jacquet and Shalika [JS1] show that the factors L(s,w, x m)
and ¥(v;W,W', f,) are equal whenever m, and =, are unramified (and non-
archimedean), and W and W' are spherical. The more general situation is
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investigated by Jacquet, Piatetski-Shapiro, and Shalika [JPS] in the case of
nonarchimedean v, and by Jacquet and Shalika [JS3] in the case of archimedean
v. In either case, it is shown that the quotient

U(v; W,W', f3)/L(s,m, x 7.,

has, as a function of s, an analytic continuation, and a functional equation under
the simultaneous replacement of s by 1 —s and of = and 7’ by their contragredient
representations. (In [JPS], [JS1], [JS2], and [JS3], the local integrals in question
are of a slightly different form, involving a Schwartz function ® on F;?. How-
ever, the results just stated regarding such integrals apply, by arguments in [GS,
pp. 51-56], also to our integrals ¥(v; W, W', f,).) The investigations of [JPS] and
[JS3] actually take place in the broader setting of GL(n, F,) x GL(v', F,)}, for n’
not necessarily equal to n.

The purpose of the present work is to show that, under certain circumstances,
the archimedean places behave like the nonarchimedean ones. Namely, let us
return to the case n’ = n, and assume that 7, and =}, for v real or complex, are
spherical principal series representations with trivial central characters. (For ex-
ample, this will be true if = and 7’ are representations associated with GL(n, Z)
Maass forms. See [Bu3] for a discussion.) In particular, # and n’ are, by defini-
tion (of principal series representation), irreducible. We prove that, under these
conditions,

(0-3) U(v; W, W', f,) = L(s,m, x m,),

for spherical Whittaker functions W and W’. We remark that this result verifies
a conjecture of Bump [Bu3], previously known to hold only in the cases n = 2
(cf. [J]) and n = 3 (cf. [St1]). We also note from [JS3] that, in the situation at
hand, the right-hand side of (0.3) is by definition (a factor independent of 7, and
7!, times) a certain product of n? gamma functions.

Our result may have applications to generalizations of problems mentioned
above. For example, the work of Moreno [M] on Fourier coefficients of GL(2, Z)
Maass forms, and that of Shimura [Shi] on special values of L{s,w,%), both
require explicit evaluation of the archimedean integral ¥(v; W, W', f,) in terms
of gamma functions. Higher-rank analogs of these studies would likely require
the corresponding formula {0.3).

The starting point for our proof of (0.3) will be the expression of the local
integral W(v; W, W', f,) as a (generalized) Barnes integral. By this we mean a
(perhaps iterated) complex contour integral of a ratio of products of gamma func-
tions. (See section 2 below for the precise definition.) This expression will allow
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the application of a new identity — Lemma 2.2, below — for Barnes integrals to
the evaluation of U(v; W, W', f,).

Lemma 2.2 is of some independent interest. Indeed this lemma, according
to which a certain m-fold Barnes integral reduces to an (m — 1)-fold integral,
may be considered a generalization of “Barnes’ (First) Lemma” [Barl], which
is a central result in the theory of Barnes integrals. (We recall Barnes’ Lemma
in equations (2.3), below.) In addition, our Lemma 2.1 (which is required in
the proof of Lemma 2.2) represents a new identity for single Barnes integrals.
As such, Lemma 2.1 complements an already extensive list of such identities.
For other examples, and for a discussion of Barnes’ Lemma and some related
formulas, see [Bai].

The connection between Barnes integrals and the archimedean theory of au-
tomorphic L-functions was first noticed by Bump, and has also proved fruitful
in a context somewhat different from (but parallel to) that of (0.3). Namely,
suppose v is archimedean; let w, and #/, be spherical principal series representa-
tions of GL(n, F,)) and GL(n—1, F,)) respectively, with trivial central characters.
Associated with 7, and 7!, is a local L-factor, which is a product of n(n — 1)
gamma functions, and a local integral analogous to (0.2). (See [JS3] for details.)
Bump [Bu2] proved, using “Barnes’ Second Lemma” [Bar2] for Barnes integrals,
that this local integral and L-factor agree in the case n = 3, and conjectured
[Bu3] that this should hold for general n. In [St3] we have recently verified this
conjecture, also by way of Barnes integrals.

Regarding more general values of (n,n’), it should be noted that the analogous
archimedean integral and L-factor will not always be equal. This may be seen
even in the case (n,n') = (3,1), cf. [Bul]. Indeed, heuristic arguments of Bump
[Bu3] strongly suggest that such equality will obtain only when [n —n'| < 1.

The present paper will proceed as follows. In Section 1 we state our main
theorem (Theorem 1.1), by reformulating (0.3) in language more specific to
the situation of interest. Under this reformulation, the integral ¥(v; W, W', f,)
is reinterpreted as a certain integral U, (s;a,b) of Whittaker functions, where
a,b € C* are associated with m, and =), respectively. Section 2 contains infor-
mation concerning Barnes integrals, including the two lemmas mentioned above.
In Section 3 we express ¥, (s;a,b) as a Barnes integral, by first writing it as a
convolution of Mellin transforms of Whittaker functions for GL(n, F,)), and then
using known formulas for these Mellin transforms as Barnes integrals themselves.
We also recall some known cases where such Mellin transforms (or, more exactly,
residues thereof) reduce to Mellin transforms of GL(n — 1, F,,) Whittaker func-
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tions. In Section 4 we prove Theorem 1.1, essentially as follows: we apply Lemma
2.2 to our Barnes integral expression for ¥,,(s; a,b). Examining our integral after
this application, we see (by virtue of the residue formulas just mentioned) that
we are left with a convolution of Mellin transforms of GL(n — 1, F,,) Whittaker
functions. Our theorem then follows by induction on n (the case n = 2 being
equivalent, as we will see below, to Barnes’ Lemma).

ACKNOWLEDGEMENT: We would like to thank Dan Bump and Sol Friedberg
for several valuable conversations regarding, and numerous specific suggestions
for improving, this manuscript.

1. Definitions and notation

We will, for the remainder of the paper, restrict our attention to the case F,, = R.
The case F,, = C is nearly identical, because of the similarity (cf. [St2]) between
spherical Whittaker functions on GL(n,R) and those on GL(n,C).

Let X, C GL{n,R) be the group of upper triangular, unipotent matrices, and
let Y,, C GL(n,R) be the group of diagonal matrices y of the form

y = diag(y192* Yn-1,Y2Y3" " Yn-1,-- > Yn-1, 1),

with y; € RY for 1 < j < n—1. Let Z, denote the center of GL(n,R). Also
let a1, a2,...,a,-1 € C, and define a € C* by a = (ay,az,...,a,) where a, =
—@1— 82—+ — Gp—1. Then the map x, : X, ¥,Z, — C given by

n—1 J
i(n—1)/2
Xa(zy2) = ] yﬁ‘" 24 [T v
j=1 k=1

is a quasicharacter of X,Y,Z,, and may be induced to a representation
of GL{n,R). This latter representation, which we denote by w(a), will be
irreducible for almost all values of a. Assuming, as will will henceforth unless
otherwise stated, that a is such a value, 7(a) is a so-called spherical principal
series representation of GL{n,R). Note that, by our construction, =(a) has
trivial central character.

A spherical Whitteker function W, 4(g) for m(a) is a function on GL(n, R) such
that

(a) the restriction, to the space of right translates of W, 4(g), of the regular

representation of GL(n,R) is isomorphic to (a);
(b) W, a(zg) = 2mi@12423+ 430 10) W, (g) for z € X,, and g € GL(n, R);
(€) Wy a(gkz) = W, 4(g) for g ¢ GL(n,R), k € K, = O(n,R), and 2 € Z,,;
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(d) Who(y) is bounded as any y; — oo.
Such a function W, ,(g) is known to exist and, by multiplicity-one theorems of
Shalika [Sha] and Wallach [Wa], to be unique up to constant multiples.

By the Iwasawa decomposition GL(n,R) = X, Y, Z, Ky, Wy, o(g) is determined
by its restriction to the subgroup X,,Yy,; by property (b) of Whittaker functions,
we may write

W, a(m‘y) - ezm‘(zl,g+z2,3+~-+wn_1,n)Wn a(y).

The function W, .(y) is itself often called a “GL(n,R) spherical Whittaker
function of type a.”

As noted above, L(2s,m(2a) x 7(2b)) is essentially equal to a product of n?
gamma functions. Moreover, the local integral U(R; W, 24, Wi 25, f2s) (see (0.2)
above), which we will denote more simply by U, (s;a,b), may be given by

(1.1)

n—1
. itn—i) Y5
U, (s;a,b) = T(ns) / W2 (y) Wa,as(y) [ (ry;) % (24570 9) 24,
R¥)»—1 j=1 Yi

(The given normalization of this integral, and of the variables appearing in it,
will prove convenient in what follows.) In particular, equation {0.3) amounts, in
the context presently under consideration, to the following theorem, which we
prove in Section 4 below.

THEOREM 1.1: Let all notation and assumptions be as above. Then

n

U, (s;a,b) = H (s + aj + by).
k=1

That is, the local L-factor and its associated local integral are, in this case, the
same.

2. Identities for Barnes integrals

We now define, and develop some properties of, Barnes integrals, which will play
a significant role in what follows.
A (single) Barnes integral is one of the form

M N
(2.1) / H ¢ (u; + 2) H D% (v, — 2) dz,
% §=1 k=1
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where M, N are nonnegative integers; €;,0; = £1; uj,vx € C. The path of
integration is a line parallel to the imaginary axis, indented if necessary to insure
that any poles of H]Nil I'%i (u; + 2) are to the left of this path, while any poles
of I'[,CN=1 ['% (v, — 2) are to its right. (Note that poles arise only for those j with
g; = 1, and those k with §; = 1, since the gamma function is never zero. Note
also the tacit assumption that, if e; = dx = 1, then u; + v & Z; otherwise the
path of integration could not be chosen as above.) In this paper, unless otherwise
specified, the path of integration of any Barnes integral will always be of this form.

It may be shown that the integral (2.1) converges absolutely, and uniformly
for the real parts of the u;’s and the vi’s in compact subsets of the real line,
provided

M N
ZE]‘ + Zék > 0.
i=1 k=1

Indeed, such convergence follows from “Stirling’s formula” (cf. [WW, Section
13.6)):

(2.2) lim |z + z'y)|e%ly||y|%_z =2
ly| =00

(z and y real), uniformly for = in compact subsets. In particular, all (single)
Barnes integrals in this paper are, for these reasons, convergent in this way.

Multiple integrals that are of the form (2.1) in each variable of integration are
also called Barnes integrals (or, sometimes, generalized Barnes integrals). For
example, in Section 3 we will express ¥, (s;a,b) as such an integral, by writing
it as a convolution of the Mellin transforms ]/\/I\na() and M\n,b(-) of W, 2,(y) and
W...26(y) respectively, and observing that these Mellin transforms are themselves
expressible as Barnes integrals.

Stirling’s formula (along with, if necessary, induction arguments) may be used
to demonstrate the absolute convergence of all multiple Barnes integrals encoun-
tered in the present work. Thus our frequent permutations, below, of the orders
of integration in such integrals are justified.

Barnes [Barl] [Bar2| investigated various situations under which integrals like
(2.1) reduce to ratios of products gamma functions. One such situation is encap-
sulated by “Barnes’ Lemma” [Barl}, which may be stated as follows:

(2.3a) 5%/F(a+z)F(ﬂ+z)F('y—z)I‘(5—z) dz = Cla+y,a+d,a+8+v+4)

for a, 8,7, 6 € C, where
I'(w)I'(v)I'(qg — u)l'(g — v)
I'(g) '

(2.3b) Clu,v,q9) =
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Our Lemma 2.2 below may be considered as a generalization, to a certain multiple
Barnes integral, of Barnes’ Lemma.
In order to prove Lemma 2.2, we will first need the following.

Lemma 2.1: IfR4+r—-F-G-H—-f—g—h=0, then

/C(F+z,G+z,R+z)C’(f —z,9—zr—2)I'(H+2)T'(h—2)dz

- /C’(F+z,G+z,F+G+h+z)C’(f—z,g— oftgtH-2)

’ Tr—f-g+2)I'(R-F -G - 2)d=.
That is, the integral on the left-hand side is invariant under the substitutions
25) Hor—-f-¢g; h—-R-F-G; R>F+G+h; r— f+g+H.
Proof: Into Barnes’ Lemma (2.3a), we put
a=ty; PB=H; v=h §d=1,.
We multiply both sides of the result by
T(R—F -G+ 1)I(F—t)I(G -t )T(r — f — g+ t2)['(f — t2)[\(g — ta)

2m

and integrate in ¢; and ts, whence
(2.4) / T(H + 2)T(h — 2)
2

{ 2Lm T(z+t)D(R~ F — G + t,)T(F — t,)T(G — 1) dtl}

{51— T(~2+t)0(r— f—g+ta)[(f — t2)T(g — t2) dtg} dz
me to
1

= — C(t]+h,t1+t2,t1+H+h+t2)F(R—F—G+t1)
2mi Jyy 4,

T(F - t1)I(G — tO)T(r — f — g+ ta)T(f — t2)T(g — t2)dt1dt,

%’}l / TR~ F G+ t)T(F ~ t)I(G ~ t)T(h + t,)

. / T(r - f — g+ t2)T(f ~ t2)T(g — ta)T(H + t2)T'(t1 + t2)
t T(H+h+t+1s)

dta dty.

Here the paths of integration in #; and ¢y are as described above for Barnes
integrals.
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Now note that the left-hand side of (2.4) is, by (2.3a), equal to the integral on
the left-hand side of our lemma. So it suffices show that the right-hand side of
(2.4) is invariant under (2.5). This invariance is clear, since (2.5) takes H + A to
r—f—g+R—F —G=H+h. So our lemma is proved. ]

We now prove a “reduction formula” that expresses an m-fold Barnes integral
of a certain kind as an (m — 1)-fold integral. This formula will be central to our
proof of Theorem 1.1 (cf. Section 4): in this proof, we will express ¥, (s;a,b) in
terms of U,,_1(s — (a1 + b1)/(n — 1),a”,b"), for appropriate a”,b”, and apply
induction on n. We remark that, here and in what follows, a “zero-fold” Barnes
integral stands for the integrand itself. (Also, an empty product is understood
to equal 1.)

LEMMA 2.2: Suppose m € Z% and, for 1 < j<m -1, P;— F; — G; = H and
p; — fj — g5 = h. Then, for any L,{, 2 € C, we have

m—1
/ [H C(Fj+2j,Gj+2j, P+ 2j + 2j41)C(f; — 2,9 — 2, P — % _Zj+1)]
215eszm Ly

T(L + 2)T(€ — 20p)T(H — 20 + 20)T(h + 29 — 21} d21 - - - dzpy,

m—1
=27|‘i/ [H C(Fj+Zj,G]'+Zj,Fj+Gj+h+Zj_1+zj)
Z1yeZm-1 Lily

C(f] — Zj,9j —zjafj+gj+H—zj—l _zj)]
Clh+L+z2p1,H+hH+h+L+£)dz---dzm—1.

Proof: The proof is by induction on m: the case m = 1 is just Barnes’ Lemma
(2.3a).

So we assume m > 2 and note that, by a rearrangement in the order of
integration, the quantity on the left-hand side of our lemma equals

(2.6)

m—1
/ [H C(F;+2;,Gj+2j, Pj+z; +zj+1)0(fj_Zjagj_zj,pj_zj_zj+1)]
225-+3%m ‘722
F(L + zm)F(é - Zm){/ C(Fl +21,Gi+ 2, Pi+ 21+ 22)
Z1
C(fi— 21,91 — 21,01 — 21 — 22)T(H — 29 + 20)T(h + 20 — 21) dzl}dzz codzg.

After an application of Lemma 2.1, along with the conditions P, — F; — Gy, = H
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and py — f1 — g1 = h, to the quantity in braces, we find that (2.6) equals

@2.7)

m—1
/ [H C(F;+2;,Gi+2,Pi+2z +zj+1)c(fj"zj>gj*zjspj_Zj—Zj+1)]
22,e00yZm

=2

-I‘(L+zm)I‘(£—zm){/ C(Fl + 21,G1 + z1, F1 + G, +h+Z()+Z1)
21

Clh-2upn—2,fitg+H—20—21)T(h+ 21 — 2)T(H — 21 + Zz)d21}
'dZZ"'dzm

= / C(Fy+z1,G1+21, Fi+Gi+h+z0+21)C(fi—21, 91— 21, fit g1 +H~20~21)

m—1
{/ [H C(Fj+2j,Gj+Zj, Pj+Zj+Zj+1)C(fj—Zj,g]'-—Zj,pj—Zj —Zj+1)}
224.-32Zm j=2

(L + 2m)T (€ — 2 )[(H — 21 + 29)T(h + 21 — 29) d2g - - dzm}d21

(at the last step, we have again permuted the order of integration).
Now note that, by our induction hypothesis, the integral in braces on the
right-hand side of (2.7) equals

m—1
2“/ [H C(Fj + 2j,Gj + 2, F; + G + h + zj-1 + 2j)
225--5Zm—1 L j—9

-C(fj—zj,gj—zj,f,-+g,-+H—z,-_1—zj)]C(h+L+zm_1,H+h,H+h+L+£)
dzy -+ dzym_1.

Then the right-hand side of (2.7) itself clearly equals the quantity on the right-
hand side of our lemma, and we are done. |

3. Mellin transforms of spherical Whittaker functions

We wish to write the integral (1.1) as a convolution of Mellin transforms of
GL(n,R) spherical Whittaker functions. To do so, we begin with a definition:
if s € C"~1, then the (normalized) Mellin transform M\n,a(s) of Wy, 24(y) (cf.
Section 1) is given by

n—1

— ] e du;
@1)  Maale)= [ Woaa(s) [T (rap)?s 000/ 2
=1 g

(R+)n—1
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It is shown in Theorem 2.1 of [St3] that the integral in (3.1a) converges absolutely,
and in fact decays exponentially as a function of the Im(s;)’s, as long as each
Re(s;) is sufficiently large compared to all the —Re(ag)’s. (The normalization we
have given our Mellin transform is justified by the relative absence of cumbersome
powers of 2 or 7, in equations (3.2) and (3.3) below.)

The Mellin inversion formula then gives

1 - n—1 I
(3.1b) Wi 2a(y) = Wn—_—l/z ] M,,0(2) H(wyj) 22’2/;(71 N2 dz;,
1,201 j=1

the path of integration in each z; being a vertical line in the complex plane,
indented if necessary to keep the poles of M\n,a(z) on its left.

We now note that ¥,,(s; a, b) may be expressed as a convolution of M\na() and
]/\/I\n,b(-), as follows. If we define

zj=Js+z; (1<j<n-1),

and write

z2=(21,-..y12n-1); °z=(%21,...,%n-1),

then (1.1}, (3.1a), and (3.1b) yield

(3.2) U, (s;a,b) = I'(ns)
n—1
1 / Vi 22, i(n=1)/2
. —_— M, o(2 wy;) "2yt VIV 4y
/(R+)n—1 { (2mi)n-1 21,201 ( )]l;Il( 5) ! !

— YA d .
n2b H Ty; )Zys J(n J))_y'J_
=1 7

1
=T —
(ns) (2 i)"—l 4/21, oy Mnyﬂ'(z)
. 2j5—22; % -J(n—J)/2 dy }d cerdz
{ /() nzbmn ()25 ( 1 by

1 — —~
= F(ns) . (_2;[)"'__{ /211 - Mn’a(sZ)Mn’b(—Z) d21 i ’dzn—l-
(At the last step, we have substituted z; — %z; for 1 < j < n —1.) The
manipulations in (3.2) are formal, but may be justified for Re(s) sufficienty large
(compared to the — Re(ay)’s and the — Re(by)’s) and for appropriate contours of
integration in the z;’s. The end result of these manipulations holds, by analytic
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continuation arguments, as long as these contours separate the poles of ]T/I\n,a(sz)
from those of ]/\/I\,,,,b(—z).

Equation (3.2) will now allow us to apply known facts concerning J/\/I\n,a (s) to
the evaluation of ¥, (s; a,b). We summarize the facts we will need: all of these
come from [St3].

We begin by writing ﬁn,a(s) as a contour integral involving a lower-rank Mellin
transform. Namely, Theorem 2.1 in [St3] gives (if C(u, v, q) is as in (2.3b)):

(3.3a)

—

— 1 ~
Mn,a(s) = F(Sl + al)F(sn—l - al) ° (27ri)"‘3 / Mn—27’a\,(t )
tls~-~:tn—3

n—2
. {HC(tJ + 85851t az + 85,1+t +a1+az+ 85+ 8j+1)] dty ---dt,_3z,

j=1
where
- J(a1 + a2)
1<j<n—3
~ ~ a; +a
(3-3¢c) @ = (@j)i<jcn—2 = (aj+2 + 711 — 22) ;
1<j<n-2

(33d) t() = 0; tn_g = —a; — as.

(Our notation here is somewhat different than that of [St3]: what we called ¢
there is denoted by @ here. Also, the product on j in the integrand here is a re-
ordering of the one appearing there.) The paths of integration are vertical lines,
indented if necessary so that all poles of M\n—z,a‘@ (considered as a function of
the t;s) are to the right of these paths, while all poles of the product on j (also
as a function of the ¢;'s) are to their left. (In [St3], we consider only paths that
are vertical lines per se; for this to be possible the s;’s must have real parts
sufficiently large compared to those of the —ay’s.)

In order that the right-hand side of (3.3a) make sense in the cases n = 2 and
n = 3, we define

My o(s) = My o(s) = 1.

We also understand the factor (27i)3~", and the contour of integration, to appear
only if n — 3 > 0. In particular, (3.3a) then yields

(3.4) My 4(s) =T(s + a)l'(s — a)
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where, by an abuse of notation, s = s; and a = (a1, az) = (a, —a). This formula
is well-known, cf. [Bul].

We may now write ¥, (s;a,b) as a multiple Barnes integral. Namely, by com-
bining (3.2) with (3.3a), we get

(3.5) U,.(s;a,b) =T'(ns)
1
/ I'(Pz1 4+ @)l (P2pn1 — a1)D (=21 + b1)T(—2p—1 — by)

(2mi)nT
1 -
J M .~
{(27r2)n—3 \/tl,.“,tn_s n_Z,a(a

—2
. rHC(tj + st,tj_l +as + st,tj_l +i;+a+ax+ SZ]‘ + st+1)] dty - ~dtn_3}

j=1
s [ M,_,+(7)
(27”:)71,——3 s n—2,b

n—2
. [HC(Z'J — 2§, Tj-1+ by — Zj,ZTj-1 + 5 + by + by — zZj — Zj+1):| dzy-- 'd.’L‘n_3}
.dzl PN dz:n_l7

where 7 bears the same relation to the z;’s and to b as f does to the ¢;’s and to
a (cf. (3.3b)); b bears the same relation to b as @ does to a (cf. (3.3¢)); zg = 0;
and z,_2 = —by — ba.

Our proof below of Theorem 1.1 will also require some information, which we
now recall, regarding residues of M\n,a(s). Specifically, we have

(3.6a) lim (s1+a1)M, a(s {H [(a; — al)] n-1,0"(8"),

s§1—~—ay

where
(3.6b) o' = (aj+1 T ) ;s = (sj+1 + L—lal) ;
n—1/1cign1 n=bigicna
Indeed, equations (3.6) are just the case k = 1 of Theorem 3.2 in [St3].
For our computations below, it will in fact be useful to rewrite (3.6a), using
equations (3.3). To do so we note that, on the right-hand side of (3.3a), the
variable s; appears only in I'(s; + 1) and in the j = 1 factor in the product.

Since the gamma function has a simple pole, of residue one, at zero (and since,
again, tp = 0), we compute from (2.3b) that

(3.7) 811_.1}{1&1 (81 + al)F(sl + al)C(tl +s1,lo+as+s1,t0+t1+a1+a2+s51+ 32)
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F(tl - al)l"(ag - al)F(Sz +ay + az)r(h + 89+ a1)
P(tl + 89 + 0.2) )

Combining (3.3a), (3.6a), and (3.7), we get

(38) F(Sn_l — al)F(Sz +a + 0,2)

1 - F(tl - al)l"(tl + 82 + al)
s M, 2
(2mi)n—3 -/tl,...,tn_a n—2,a(/\) T'(ty + s2 + ag2)

n—2
: [H Clt; + s tj—1+ag + 85, tj1 +tj+ay+ag + 55+ s,~+1)] dty - dt,_s
i=2

= Lllr(aj - al)] M, 1,an(s"),

with o” and " as in (3.6b). We remark that the interchange of the limit in
(3.6a) with the integral in (3.3a) is valid, for appropriate choice of the con-
tours of integration, provided the poles in t; of I'(t; — a1) are disjoint from
those of ﬁn_z,a(f) But, as is shown in [St3], the latter has its leftmost pole at
t1 = min{as, a4, - -a,}. So we need only assume that a; < min{as,as,...,an}.
Analytic continuation arguments insure that we do not, in our application be-
low of (3.8), suffer any loss of generality by making this assumption. (Strictly
speaking, we are assuming that a is such that n(a) is irreducible. However, the
Whittaker function W, 2, may in fact be extended to a holomorphic function
of a. So, in applying the analytic continuation arguments just mentioned, we
needn’t worry about the measure-zero set of values of a where #(a) is reducible.)

4. Proof of Theorem 1.1
We proceed by induction on n: the case n = 2 follows directly from formula (3.2)
for ¥,,(s;a,b), formula (3.4) for Mg,a(s), and Barnes’ Lemma (2.3a).

So we assume n > 2, and consider (3.5). We change the order of integration,
and recall that °z; = z; + js, to get

——

1 ~
4. ;a,b) = T o
( 1) v, (37 a, b) P(’H,S) (27”:)"_3 /tl,...,tn_a Mn—2,a(t )

i L, @ { e |
—— M A7) e
(2,”1)11—3 T1,e0yTn—3 n——2,b( ) (27m)n—1 Z1yeeyZn—1

n—2
.[HC(tj +is+zj,tio1tas+is+z, i1+t tar+ax+ (25 +1)s+ 2 + zj41)
i=1
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C(.'L'] —2j,Tj—1+ by — 2, Tj—1+x; + by + by — zj — Zj+1)]

T(zn—1+ (n—1)s — @) (=2p-1 = b)) (21 + s + a1)T(~21 + by) d2y - - dz"_l}
“dt{---dt,_sdxy---dr,_3.

If we define z; = 0, then we may apply Lemma 2.2, with m = n — 1, to the
integral in braces; (4.1) then reads

(4.2) U, (s;a,b) = T(ns) - @%m /t M, ,a(F)

1yeebn—3

7 . o s
— M () —
(27‘-2)"_3 Ty yn-3 n—2,b( ) (27”’)n-2 21y —2

n—2
'[HC(tj +js+zjtjm1 Far+is+ 2z, b1+t 4+ ag+ by + 255 + 251 + z5)
j=1

C(.'E] — Zj,Tj.1+ by — Zj,Tji—1+x;+a+ by + s — Zj_1— Zj)]
-C((n—1)s—ay+bi+2n_2,s+a1+b1,ns)dz; - - 'dZn_g}dtl coodtp_sdry - dTp_3.

Changing once more the order of integration, and again using the fact that *z; =
Jjs+ zj, we find from (4.2) that

(43) n(50,8) = T(s+ a1 + by)D((n — )5 — a1 — by)
1 1 . N .
(2mi)n-2 /z1,~--,zn_2{ (2mi)n=3 /tl,...,t,._g M, _o5(t )I(—a1+ b1+ s+ °2n_2)

n—2
. [HC(tj+st,tj_1 +a2+32j,tj_1 +tj+a2+b1+s+szj_1+szj)]dtl .. ‘dt'n-?’}
Jj=1

———1 Y3 —~
{ (2mi)n—3 Ll . Mn_z,z(w)l‘(m —by+8—2,-9)

yerey

n—2

-[HC(zj —zj,zj—1+br— 25,251+ xitar b+ s—2z5 —z,-)] dzy-- ~da:n_3}
j=1

‘dzy - dzp_oa.

Let us examine carefully the integral in the ¢;s, in (4.3). If we define

a1 +b+s
n

. b .
s;=b1+s+szj_1—](9inlﬁ> (2<ji<n-1),

a1+b1+s‘

2< i< n);
~ (2<j<n);

a]=-b—s+ aj =a; +
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and make the change of variable

fa1+bi+s
()

n
for 1 < j < n—3, then (since (a; + b1 + s)/n = (a1 + a2 — a] —a3)/(n — 2)) we
find that

1 —~ ~
(44) (2—1m_)—n;—3 /t , Mn_z,a(t )l"(~a1 +b+s+ sZn._z)
1y--9bn-3

-2
. ["HC(tj + szj, tj.1t+az+ szj, tioi+tj+az+bi+s+ st_l + SZJ')] dty---dtn_3
j=1
=T(s+ag+b1)'(s5,_, — a])['(s5 + a} + a3)
. 1 / ]\7 R (t»;)l_‘(t{ —a})T(tf + 85+ a})
@ri)n=3 Jor e, VTR [(t] + 53 + a3)

n—3

n-—2
[H C(t; + s5,t;_1 + a3+ 85,t;_; +t] +a] + a3+ s + s;ﬂ)} di}---dty_4
j=2

where #* bears the same relation to the t7’s and to a* as t does to the t;’s and to a
(cf. (3.3b)); @* bears the same relation to a* as @ does to a (cf. (3.3c)); t§ = 0; and
tr_o = —a} —a%. (We have also used the fact that C(u,v,q) = C(¢—u,q—v,q),
cf. the definition (2.3b).) Comparing (4.4) and (3.8), we conclude that

1 —~
4. - V- 3 ; o
49 (2mi)n—3 ‘/txw.,t,,_a n—2,a(tA)F( ay+by+ 5+ %2,_2)

n—2
. [HC(tJ +3zj, tji—1+az+ szj, tji_1+t;+as + b, +3+82j_1 +sz]-) dty---dt,_3
j=1

= F(.S‘ +as + bl) [H I‘(a; - a’{)] I/\'l\n_l,(a-)u((s*)")

=3

= [H I'(s+a; + bl)} Mo_1,00 (25 + 3(s — a1/(n = 1)))1<j<n—2),

i=2

since a bit of algebra shows that

aj—ai=s+a;+b (3<j<n);

N\ * a{ _ . ay o,
(a) = aj+1+——_—i = a]+1+n_1 =a;
n 1<j<n—1 1<j<n-1

n—1-—j . J
(s*)' = (s*-‘ 1+ ~————a{) = (z +js— al) .
SRS 1sisn—2 N\ n=1"/icjcn-2
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Now to evaluate the integral in the z;’s, in (4.3), we may simply substitute
tj — Zj; bj > ajz; zj © —SZJ'

(for all relevant j) into (4.5). The result is
1 = ~
(46) W ‘/xl‘w’wn_a Mn—Z,E(x)F(al - b1 + 8 — Zn_2)

n—2
. [HC(Z'] —Zjy Tj—1 +by — Zj,xj—1+tx; +a1+ bo+s— Zj—1— Zj) dzy---dxry_3
j=1

_ [ P(s+a; + bj)] Myosp(—2j — 351/ (n — D)) 1<jcnmz):

o

Combining (4.3), (4.5), and (4.6) then yields
(4.7 U, (s;a,b)

= F(S +a1 + b1)I‘((n — 1)8 —ay — bl) [ﬁ F(S + a; + bl)F(S +a; + b])]
j=2
.(271'2'1)"*2 /z L M\"‘l*“"((zﬂ' +3j(s —a1/(n - 1)))icj<n-2)

M1 (=25 — jb1/(n = 1)) 1jsn—2) d21 - dzn 2

=T{s+a1+b) [H P(s+a; +b)I(s+a; + bj)] v, 4 (s — %i—_%, a",b”) ;
=2

at the last step, we have substituted z; — z; — jb1/(n—1) for 1 < j < n -2, and
applied (3.2). By our induction hypothesis, (4.7) reads

\I’n(s; a, b) = F(S +a + bl)

- o= ar+b
.[Hf(s+aj+b1)F(s+a1 +bj)} H 1"<3~ 711—11 +a;!+b$c'>
=2 k=1

=T(s+ a1+ b1) [H T(s +a; +b))T(s + a1 + bj)] I T(s+a; + 8.
j=2 J.k=2

But this is precisely the statement of Theorem 1.1, and we are done. |
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